L. Kjeldsen, A. H. Johnsen, H. Sengelov, and N. Borregaard, Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase, J Biol Chem, vol.268, pp.10425-10457, 1993.

F. Liu, H. Yang, H. Chen, M. Zhang, and Q. Ma, High expression of neutrophil gelatinaseassociated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats, Adv Med Sci, vol.60, issue.1, pp.133-141, 2015.

N. Hamzic, A. Blomqvist, and C. Nilsberth, Immune-Induced Expression of Lipocalin-2 in

, Cyclooxygenase-2 and the Febrile Response, Brain Endothelial Cells: Relationship with Interleukin, vol.6, issue.3, pp.271-80, 2013.

E. Borkham-kamphorst, F. Drews, and R. Weiskirchen, Induction of lipocalin-2 expression in acute and chronic experimental liver injury moderated by pro-inflammatory cytokines interleukin-1? through nuclear factor-?B activation: LCN2 induction in acute and chronic experimental liver injury, Liver Int, vol.31, issue.5, pp.656-65, 2011.

W. Eilenberg, S. Stojkovic, A. Piechota-polanczyk, C. Kaun, S. Rauscher et al., Neutrophil Gelatinase-Associated Lipocalin (NGAL) is Associated with Symptomatic Carotid Atherosclerosis and Drives Pro-inflammatory State In Vitro, Eur J Vasc Endovasc Surg, vol.51, issue.5, pp.623-654, 2016.

C. Latouche, E. Moghrabi, S. Messaoudi, S. , N. Dinh-cat et al., Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system, Hypertension, vol.59, issue.5, pp.966-72, 2012.

P. Naudé, U. Eisel, H. C. Comijs, N. A. Groenewold, D. Deyn et al., Neutrophil gelatinase-associated lipocalin: A novel inflammatory marker associated with latelife depression, J Psychosom Res, vol.75, issue.5, pp.444-50, 2013.

T. H. Flo, K. D. Smith, S. Sato, D. J. Rodriguez, M. A. Holmes et al., Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron, Nature, vol.432, issue.7019, pp.917-938, 2004.

M. Floderer, M. Prchal-murphy, and C. Vizzardelli, Dendritic Cell-Secreted Lipocalin2

C. Induces and . Apoptosis, Contributes to T-Cell Priming and Leads to a TH1 Phenotype, PLoS ONE, vol.10, issue.7, p.101881, 2014.

G. Bao, M. Clifton, T. M. Hoette, K. Mori, S. Deng et al., Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex, Nat Chem Biol, vol.6, issue.8, pp.602-611, 2010.

A. Schroll, K. Eller, C. Feistritzer, M. Nairz, T. Sonnweber et al., Lipocalin-2 ameliorates granulocyte functionality: Innate immunity, Eur J Immunol, 2012.

S. Shao, T. Cao, J. L. Li, B. Fang, H. Zhang et al., Increased Lipocalin-2 Contributes to the Pathogenesis of Psoriasis by Modulating Neutrophil Chemotaxis and Cytokine Secretion, J Invest Dermatol, vol.136, issue.7, pp.1418-1446, 2016.

D. H. Goetz, The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition, Mol Cell, vol.10, pp.1033-1076, 2002.

K. M. Schmidt-ott, K. Mori, J. Y. Li, A. Kalandadze, D. J. Cohen et al., Dual Action of Neutrophil Gelatinase-Associated Lipocalin, J Am Soc Nephrol, vol.18, issue.2, pp.407-420, 2007.

D. Grande, A. Giuffrida, C. Carpinteri, G. Narbone, G. Pirrone et al., Neutrophil gelatinase-associated lipocalin: a novel biomarker for the early diagnosis of acute kidney injury in the emergency department, Eur Rev Med Pharmacol Sci, vol.13, issue.3, pp.197-200, 2009.

C. R. Parikh and P. Devarajan, New biomarkers of acute kidney injury, Crit Care Med, 2008.

S. Chakraborty, S. Kaur, S. Guha, and S. K. Batra, The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer, Biochim Biophys Acta BBA-Rev Cancer, vol.1826, issue.1, pp.129-69, 2012.

D. R. Flower, Beyond the superfamily: the lipocalin receptors, Biochim Biophys Acta BBA-Protein Struct Mol Enzymol, vol.1482, issue.1, pp.327-336, 2000.

L. Yan, N. Borregaard, L. Kjeldsen, and M. A. Moses, The High Molecular Weight Urinary Matrix Metalloproteinase (MMP) Activity Is a Complex of Gelatinase B/MMP-9 and Neutrophil Gelatinase-associated Lipocalin (NGAL): MODULATION OF MMP-9 ACTIVITY BY NGAL, J Biol Chem, vol.276, issue.40, pp.37258-65, 2001.

A. Yabluchanskiy, Y. Ma, R. P. Iyer, M. E. Hall, and M. L. Lindsey, Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease, Physiology, vol.28, issue.6, pp.391-403, 2013.

D. Bu, A. Hemdahl, A. Gabrielsen, J. Fuxe, C. Zhu et al., Induction of Neutrophil Gelatinase-Associated Lipocalin in Vascular Injury via Activation of Nuclear Factor-?B, Am J Pathol, vol.169, issue.6, pp.2245-53, 2006.

A. Hemdahl and A. G. , Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction, Arterioscler Thromb Vasc Biol, vol.26, issue.1, pp.136-178, 2006.

X. Leng, T. Ding, H. Lin, Y. Wang, L. Hu et al., Inhibition of Lipocalin 2 Impairs Breast Tumorigenesis and Metastasis, Cancer Res, vol.69, issue.22, pp.8579-84, 2009.

T. Berger, A. Togawa, G. S. Duncan, A. J. Elia, A. You-ten et al., Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemiareperfusion injury, Proc Natl Acad Sci, vol.103, issue.6, pp.1834-1843, 2006.

L. R. Devireddy, C. Gazin, X. Zhu, and M. R. Green, A Cell-Surface Receptor for Lipocalin 24p3 Selectively Mediates Apoptosis and Iron Uptake, Cell, vol.123, issue.7, pp.1293-305, 2005.

Y. Wang, M. Wu, R. Al-rousan, H. Liu, J. Fannin et al., Iron-Induced Cardiac Damage: Role of Apoptosis and Deferasirox Intervention, J Pharmacol Exp Ther, vol.336, issue.1, pp.56-63, 2011.

J. Kim and M. Wessling-resnick, The Role of Iron Metabolism in Lung Inflammation and Injury, J Allergy Ther, vol.0, issue.0, pp.1-6, 2012.

P. Whittaker, F. A. Hines, M. G. Robl, and V. C. Dunkel, Histopathological Evaluation of Liver, Pancreas, Spleen, and Heart from Iron-Overloaded Sprague-Dawley Rats* 1, 2, Toxicol Pathol, vol.24, issue.5, pp.558-563, 1996.

F. Aigner, H. T. Maier, H. G. Schwelberger, E. A. Wallnöfer, A. Amberger et al.,

, Lipocalin-2 Regulates the Inflammatory Response During Ischemia and Reperfusion of the Transplanted Heart, Am J Transplant, vol.7, issue.4, pp.779-88, 2007.

G. Ding, J. Fang, S. Tong, L. Qu, H. Jiang et al., Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer: LCN2/ERK/SLUG Axis Promotes PCa Aggression. The Prostate, vol.75, pp.957-68, 2015.

Z. Du, B. Wu, Y. Xie, Y. Zhang, L. Liao et al., Lipocalin 2 promotes the migration and invasion of esophageal squamous cell carcinoma cells through a novel positive feedback loop, Biochim Biophys Acta BBA-Mol Cell Res, issue.10, pp.2240-50, 1853.

L. Leung, N. Radulovich, C. Zhu, S. Organ, B. Bandarchi et al., Lipocalin2 Promotes Invasion, Tumorigenicity and Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma, PLoS ONE, vol.7, issue.10, p.46677, 2012.

J. A. Gwira, F. Wei, S. Ishibe, J. M. Ueland, J. Barasch et al., Expression of

, Neutrophil Gelatinase-associated Lipocalin Regulates Epithelial Morphogenesis in Vitro, J Biol Chem, vol.280, issue.9, pp.7875-82, 2005.

G. Wang, N. Ma, L. Meng, Y. Wei, and G. J. , Activation of the phosphatidylinositol 3kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation, Mol Cell Biochem, vol.410, issue.1-2, pp.207-220, 2015.

A. Iannetti, F. Pacifico, R. Acquaviva, A. Lavorgna, E. Crescenzi et al., The neutrophil gelatinase-associated lipocalin (NGAL), a NF-?B-regulated gene, is a survival factor for thyroid neoplastic cells, Proc Natl Acad Sci, vol.105, issue.37, pp.14058-14063, 2008.

S. A. Koh and K. H. Lee, HGF mediated upregulation of lipocalin 2 regulates MMP9 through nuclear factor-?B activation, Oncol Rep, vol.34, issue.4, pp.2179-87, 2015.

R. K. Mongre, S. S. Sodhi, N. Sharma, M. Ghosh, J. H. Kim et al., Epigenetic induction of epithelial to mesenchymal transition by LCN2 mediates metastasis and tumorigenesis, which is abrogated by NF-?B inhibitor BRM270 in a xenograft model of lung adenocarcinoma, Int J Oncol, vol.48, issue.1, pp.84-98, 2016.

J. Yang, D. R. Bielenberg, S. J. Rodig, R. Doiron, M. C. Clifton et al., Lipocalin 2 promotes breast cancer progression, Proc Natl Acad Sci U S A, vol.106, issue.10, pp.3913-3921, 2009.
DOI : 10.1073/pnas.0810617106

URL : https://www.pnas.org/content/pnas/106/10/3913.full.pdf

L. Ding, H. Hanawa, Y. Ota, G. Hasegawa, K. Hao et al.,

/. Neutrophil-gelatinase-b, Associated Lipocalin Is Strongly Induced in Hearts of Rats With Autoimmune Myocarditis and in Human Myocarditis, Circ J, vol.74, issue.3, pp.523-553, 2010.

C. Langelueddecke, E. Roussa, R. A. Fenton, N. A. Wolff, W. Lee et al.,

, Lipocalin-2 (24p3/Neutrophil Gelatinase-associated Lipocalin (NGAL)) Receptor Is Expressed in Distal Nephron and Mediates Protein Endocytosis, J Biol Chem, vol.287, issue.1, pp.159-69, 2012.

E. Dizin, U. Hasler, S. Nlandu-khodo, M. Fila, I. Roth et al., Albuminuria induces a proinflammatory and profibrotic response in cortical collecting ducts via the 24p3 receptor, AJP Ren Physiol, vol.305, issue.7, pp.1053-63, 2013.

S. K. Moestrup and P. J. Verroust, Megalin-and Cubilin-Mediated Endocytosis of ProteinBound Vitamins, Lipids, and Hormones in Polarized Epithelia, Annu Rev Nutr, vol.21, issue.1, pp.407-435, 2001.

A. Van-dijk, R. A. Vermond, P. Krijnen, L. Juffermans, N. E. Hahn et al., Intravenous clusterin administration reduces myocardial infarct size in rats: CLUSTERIN ADMINISTRATION REDUCES INFARCT SIZE, Eur J Clin Invest, vol.40, issue.10, pp.893-902, 2010.

K. Miharada, T. Hiroyama, K. Sudo, I. Danjo, T. Nagasawa et al., Lipocalin 2mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells, J Cell Physiol, vol.215, issue.2, pp.526-563, 2008.
DOI : 10.1002/jcp.21334

A. Saito, S. Pietromonaco, A. Loo, and M. G. Farquhar, Complete cloning and sequencing of rat gp330/" megalin," a distinctive member of the low density lipoprotein receptor gene family, Proc Natl Acad Sci, vol.91, issue.21, pp.9725-9729, 1994.

J. R. Leheste, B. Rolinski, H. Vorum, J. Hilpert, A. Nykjaer et al., Megalin knockout mice as an animal model of low molecular weight proteinuria, Am J Pathol, vol.155, issue.4, pp.1361-70, 1999.

V. Hvidberg, C. Jacobsen, R. K. Strong, J. B. Cowland, S. K. Moestrup et al., The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake, FEBS Lett, vol.579, issue.3, pp.773-780, 2005.

L. Axelsson, M. Bergenfeldt, and K. Ohlsson, Studies of the release and turnover of a human neutrophil lipocalin, Scand J Clin Lab Invest, vol.55, issue.7, pp.577-588, 1995.

K. Mori, H. T. Lee, D. Rapoport, I. R. Drexler, K. Foster et al., Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury, J Clin Invest, vol.115, issue.3, pp.610-631, 2005.

J. Mishra, C. Dent, R. Tarabishi, M. M. Mitsnefes, Q. Ma et al., Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery, The Lancet, vol.365, issue.9466, pp.1231-1238, 2005.
DOI : 10.1016/s0140-6736(05)74811-x

J. Mishra, Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury, J Am Soc Nephrol, vol.14, issue.10, pp.2534-2577, 2003.

P. Kümpers, C. Hafer, A. Lukasz, R. Lichtinghagen, K. Brand et al., Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury, Kidney Blood Press Res, vol.14, issue.1, pp.274-283, 2008.

H. Ding, Y. He, K. Li, J. Yang, X. Li et al., Urinary neutrophil gelatinaseassociated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy, Clin Immunol, vol.123, issue.2, pp.227-261, 2007.

N. Paragas, A. Qiu, Q. Zhang, B. Samstein, S. Deng et al., The Ngal reporter mouse detects the response of the kidney to injury in real time, Nat Med, vol.17, issue.2, pp.216-238, 2011.

J. Kanda, K. Mori, H. Kawabata, T. Kuwabara, K. P. Mori et al., An AKI biomarker lipocalin 2 in the blood derives from the kidney in renal injury but from neutrophils in normal and infected conditions, Clin Exp Nephrol, vol.19, issue.1, pp.99-106, 2015.

J. Mishra, Amelioration of Ischemic Acute Renal Injury by Neutrophil GelatinaseAssociated Lipocalin, J Am Soc Nephrol, vol.15, issue.12, pp.3073-82, 2004.

E. K. Choi, H. Jung, K. H. Kwak, S. J. Yi, J. A. Lim et al., Inhibition of Oxidative Stress in Renal Ischemia-Reperfusion Injury, Anesth Analg, vol.124, issue.1, pp.204-217, 2017.

H. T. Sponsel, A. C. Alfrey, W. S. Hammond, J. A. Durr, C. Ray et al., Effect of iron on renal tubular epithelial cells. Kidney Int, vol.50, pp.436-480, 1996.

R. M. Bernardi, L. Constantino, R. A. Machado, F. Vuolo, P. Budni et al., Nacetylcysteine and deferrioxamine protects against acute renal failure induced by ischemia/reperfusion in rats. Rev Bras Ter Intensiva, vol.24, pp.219-242, 2012.

B. De-vries, S. J. Walter, V. Bonsdorff, L. Wolfs, T. Van-heurn et al., Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury, Transplantation, vol.77, issue.5, pp.669-75, 2004.

M. I. Ashraf, H. G. Schwelberger, K. A. Brendel, J. Feurle, J. Andrassy et al.,

, Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation, Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg, vol.16, issue.3, pp.808-828, 2016.

M. Jung, A. Sola, J. Hughes, D. C. Kluth, E. Vinuesa et al., Infusion of IL-10expressing cells protects against renal ischemia through induction of lipocalin-2, Kidney Int, vol.81, issue.10, pp.969-982, 2012.

R. Guiteras, A. Sola, M. Flaquer, G. Hotter, J. Torras et al., Macrophage Overexpressing NGAL Ameliorated Kidney Fibrosis in the UUO Mice Model, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.42, issue.5, pp.1945-60, 2009.

R. D. Pawar, M. Pitashny, S. Gindea, A. T. Tieng, B. Levine et al., Neutrophil gelatinase-associated lipocalin is instrumental in the pathogenesis of antibody-mediated nephritis in mice, Arthritis Rheum, vol.64, issue.5, pp.1620-1651, 2012.

A. Viau, K. El-karoui, D. Laouari, M. Burtin, C. Nguyen et al., Lipocalin 2 is essential for chronic kidney disease progression in mice and humans, J Clin Invest, vol.120, issue.11, pp.4065-76, 2010.

Y. Wu, T. Su, L. Yang, S. Zhu, and X. Li, Urinary neutrophil gelatinase-associated lipocalin: A potential biomarker for predicting rapid progression of drug-induced chronic tubulointerstitial nephritis, Am J Med Sci, vol.339, issue.6, pp.537-579, 2010.

T. L. Nickolas, C. S. Forster, M. E. Sise, N. Barasch, S. Valle et al.,

, NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease, Kidney Int, vol.82, issue.6, pp.718-740, 2012.

F. Zeng, A. B. Singh, and R. C. Harris, The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology, Exp Cell Res, vol.315, issue.4, pp.602-612, 2009.

K. Damman, D. J. Van-veldhuisen, G. Navis, A. A. Voors, and H. L. Hillege, Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure, Eur J Heart Fail, vol.10, issue.10, pp.997-1000, 2008.

K. Shrestha, A. G. Borowski, R. W. Troughton, A. L. Klein, and W. Tang, Association Between Systemic Neutrophil Gelatinase-Associated Lipocalin and Anemia, Relative Hypochromia, and Inflammation in Chronic Systolic Heart Failure: NGAL and anemia in chronic heart failure, Congest Heart Fail, vol.18, issue.5, pp.239-283, 2012.

A. Yndestad, L. Landrø, T. Ueland, C. P. Dahl, T. H. Flo et al., Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure, Eur Heart J, vol.30, issue.10, pp.1229-1265, 2009.

A. Sahinarslan, S. A. Kocaman, D. Bas, A. Akyel, U. Ercin et al., Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis, vol.22, pp.333-341, 2011.

A. Mortara, M. Bonadies, S. Mazzetti, I. Fracchioni, P. Delfino et al., Neutrophil gelatinase-associated lipocalin predicts worsening of renal function in acute heart failure: methodological and clinical issues, J Cardiovasc Med Hagerstown Md, vol.14, issue.9, pp.629-663, 2013.

D. Bolignano, G. Basile, P. Parisi, G. Coppolino, G. Nicocia et al., Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure, Rejuvenation Res, vol.12, issue.1, pp.7-14, 2009.

D. J. Veldhuisen, Prognostic value of plasma neutrophil gelatinase-associated lipocalin for mortality in patients with heart failure, Circ Heart Fail, vol.7, issue.1, pp.35-42, 2014.

H. Villacorta, M. Santos, R. A. , B. Marroig, M. A. et al., Prognostic value of plasma neutrophil gelatinase-associated lipocalin in patients with heart failure, Rev Port Cardiol Engl Ed, vol.34, issue.7, pp.473-481, 2015.

S. Lindberg, J. S. Jensen, R. Mogelvang, S. H. Pedersen, S. Galatius et al.,

, Plasma Neutrophil Gelatinase-Associated Lipocalinin in the General Population Association With Inflammation and Prognosis, Arterioscler Thromb Vasc Biol, vol.34, issue.9, pp.2135-2142, 2014.

B. De-berardinis, H. K. Gaggin, L. Magrini, A. Belcher, B. Zancla et al., Comparison between admission natriuretic peptides, NGAL and sST2 testing for the prediction of worsening renal function in patients with acutely decompensated heart failure, Clin Chem Lab Med, vol.53, issue.4, pp.613-634, 2015.

L. B. Daniels, E. Barrett-connor, P. Clopton, G. A. Laughlin, J. H. Ix et al., Plasma Neutrophil Gelatinase-Associated Lipocalin Is Independently Associated With Cardiovascular Disease and Mortality in Community-Dwelling Older Adults, J Am Coll Cardiol, vol.59, issue.12, pp.1101-1110, 2012.

M. Katagiri, M. Takahashi, K. Doi, M. Myojo, A. Kiyosue et al., Serum neutrophil gelatinase-associated lipocalin concentration reflects severity of coronary artery disease in patients without heart failure and chronic kidney disease. Heart Vessels, vol.31, pp.1595-602, 2016.

G. Wu, H. Li, Q. Fang, S. Jiang, L. Zhang et al., Elevated circulating lipocalin-2 levels independently predict incident cardiovascular events in men in a population-based cohort, Arterioscler Thromb Vasc Biol, vol.34, issue.11, pp.2457-64, 2014.

M. Hasegawa, J. Ishii, F. Kitagawa, H. Takahashi, K. Sugiyama et al., Plasma Neutrophil Gelatinase-Associated Lipocalin as a Predictor of Cardiovascular Events in Patients with Chronic Kidney Disease, BioMed Res Int, vol.2016, pp.1-7, 2016.

Y. Solak, M. I. Yilmaz, D. Siriopol, M. Saglam, H. U. Unal et al., Serum neutrophil gelatinase-associated lipocalin is associated with cardiovascular events in patients with chronic kidney disease, Int Urol Nephrol, vol.47, issue.12, pp.1993-2001, 2015.

E. Martínez-martínez, M. Buonafine, I. Boukhalfa, J. Ibarrola, and A. Fernández-celis,

P. Kolkhof, Aldosterone Target NGAL (Neutrophil Gelatinase-Associated Lipocalin) Is Involved in Cardiac Remodeling After Myocardial Infarction Through NF?B Pathway. Hypertens Dallas Tex 1979, vol.70, pp.1148-56, 2017.

J. Bauersachs and D. Fraccarollo, Mineralocorticoid Receptor-Dependent Adverse Remodeling After Myocardial Infarction Mediated by uNGALant Activation of NF?B. Hypertens Dallas Tex 1979, vol.70, pp.1080-1081, 2017.

H. K. Sung, Y. K. Chan, M. Han, J. Jahng, E. Song et al.,

, Attenuates Autophagy to Exacerbate Cardiac Apoptosis Induced by Myocardial Ischemia, J Cell Physiol, vol.232, issue.8, pp.2125-2159, 2017.

W. Eilenberg, S. Stojkovic, A. Kaider, N. Kozakowski, C. M. Domenig et al., NGAL and MMP-9/NGAL as biomarkers of plaque vulnerability and targets of statins in patients with carotid atherosclerosis, Clin Chem Lab Med, vol.56, issue.1, pp.147-56, 2017.

L. Cheng, H. Xing, X. Mao, L. Li, X. Li et al., Lipocalin-2 Promotes M1 Macrophages Polarization in a Mouse Cardiac Ischaemia-Reperfusion Injury Model, Scand J Immunol

B. Yang, P. Fan, A. Xu, K. S. Lam, T. Berger et al., Improved functional recovery to I/R injury in hearts from lipocalin-2 deficiency mice: restoration of mitochondrial function and phospholipids remodeling, Am J Transl Res, vol.4, issue.1, pp.60-71, 2012.

M. Folkesson, M. Kazi, C. Zhu, A. Silveira, A. Hemdahl et al., Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms, Thromb Haemost, vol.98, issue.2, pp.427-460, 2007.

C. Tarín, C. E. Fernandez-garcia, E. Burillo, C. Pastor-vargas, and P. Llamas-granda,

B. Castejón, Lipocalin-2 deficiency or blockade protects against aortic abdominal aneurysm development in mice, Cardiovasc Res, vol.111, issue.3, pp.262-73, 2016.

Y. Wang, Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2: Lipid chaperones in cardiovascular diseases, Br J Pharmacol, vol.165, issue.3, pp.603-624, 2012.

A. Tarjus, E. Martínez-martínez, C. Amador, C. Latouche, E. Moghrabi et al., Neutrophil Gelatinase-Associated Lipocalin, a Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids, Hypertension, vol.66, issue.1, pp.158-166, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01755057

E. Song, P. Fan, B. Huang, H. Deng, B. Cheung et al., Deamidated Lipocalin-2 Induces Endothelial Dysfunction and Hypertension in Dietary Obese Mice, J Am Heart Assoc, vol.3, issue.2, pp.837-000837, 2014.

I. Law, A. Xu, K. Lam, T. Berger, T. W. Mak et al.,

, Deficiency Attenuates Insulin Resistance Associated With Aging and Obesity. Diabetes, vol.59, issue.4, pp.872-82, 2010.

J. T. Liu, E. Song, A. Xu, T. Berger, T. W. Mak et al., Lipocalin-2 deficiency prevents endothelial dysfunction associated with dietary obesity: role of cytochrome P450 2C inhibition: Lipocalin-2 and endothelial dysfunction, Br J Pharmacol, vol.165, issue.2, pp.816-845, 2012.

E. Lapice, M. Masulli, and O. Vaccaro, Iron Deficiency and Cardiovascular Disease: An Updated Review of the Evidence, Curr Atheroscler Rep, vol.15, issue.10, p.358, 2013.

G. Xu, J. Ahn, S. Chang, M. Eguchi, A. Ogier et al., Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation, J Biol Chem, vol.287, issue.7, pp.4808-4817, 2012.

S. Lindberg, J. S. Jensen, S. Hoffmann, A. Z. Iversen, S. H. Pedersen et al., Plasma Neutrophil Gelatinase-Associated Lipocalin Reflects Both Inflammation and Kidney Function in Patients with Myocardial Infarction, Cardiorenal Med, vol.6, issue.3, pp.180-90, 2016.

I. P. Yigit, H. Celiker, A. Dogukan, N. Ilhan, A. Gurel et al., Can serum NGAL levels be used as an inflammation marker on hemodialysis patients with permanent catheter? Ren Fail, vol.37, pp.77-82, 2015.

M. Han, Y. Li, M. Liu, Y. Li, and B. Cong, Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat, BMC Nephrol, vol.13, p.25, 2012.

M. L. Bonnemaison, E. S. Marks, and E. I. Boesen, Interleukin-1? as a driver of renal NGAL production, Cytokine, vol.91, pp.38-43, 2017.

F. Shen, Z. Hu, J. Goswami, and S. L. Gaffen, Identification of Common Transcriptional Regulatory Elements in Interleukin-17 Target Genes, J Biol Chem, vol.281, issue.34, pp.24138-24186, 2006.

P. Zhao, C. M. Elks, and J. M. Stephens, The Induction of Lipocalin-2 Protein Expression in Vivo and in Vitro, J Biol Chem, vol.289, issue.9, pp.5960-5969, 2014.

S. Lee, J. Kim, J. Kim, J. Seo, H. Han et al., Lipocalin-2 Is a Chemokine Inducer in the Central Nervous System: ROLE OF CHEMOKINE LIGAND 10 (CXCL10) IN LIPOCALIN-2-INDUCED CELL MIGRATION, J Biol Chem, vol.286, issue.51, pp.43855-70, 2011.

H. Wang, M. Wu, M. Chan, Y. Pu, C. Chen et al., Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation, Arch Toxicol, vol.88, issue.8, pp.1549-59, 2014.

E. Jang, S. Lee, J. Kim, J. Kim, J. Seo et al., Secreted protein lipocalin-2 promotes microglial M1 polarization, FASEB J, vol.27, issue.3, pp.1176-90, 2013.

M. Pitashny, N. Schwartz, X. Qing, B. Hojaili, C. Aranow et al., Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis, Arthritis Rheum, vol.56, issue.6, pp.1894-903, 2007.

R. Shashidharamurthy, D. Machiah, J. D. Aitken, K. Putty, G. Srinivasan et al., Differential Role of Lipocalin 2 During Immune Complex-Mediated Acute and Chronic Inflammation in Mice: Lipocalin 2 During Immune Complex-Mediated Inflammation, Arthritis Rheum, vol.65, issue.4, pp.1064-73, 2013.

A. Gilet, F. Zou, M. Boumenir, J. Frippiat, S. N. Thornton et al., Aldosterone up-regulates MMP-9 and MMP-9/NGAL expression in human neutrophils through p38, ERK1/2 and PI3K pathways, Exp Cell Res, vol.331, issue.1, pp.152-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01481923

C. G. Park and K. M. Choi, Lipocalin-2, A-FABP and inflammatory markers in relation to flow-mediated vasodilatation in patients with essential hypertension, Clin Exp Hypertens, vol.36, issue.7, pp.478-83, 2014.

K. Ong, A. Tso, S. S. Cherny, P. Sham, T. Lam et al., Role of Genetic Variants in the Gene Encoding Lipocalin-2 in the Development of Elevated Blood Pressure, Clin Exp Hypertens, vol.33, issue.7, pp.484-91, 2011.

T. Nakamura and S. Mizuno, The discovery of Hepatocyte Growth Factor (HGF) and its significance for cell biology, life sciences and clinical medicine, Proc Jpn Acad Ser B, vol.86, issue.6, pp.588-610, 2010.

D. Fan, A. Takawale, J. Lee, and Z. Kassiri, Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease, Fibrogenesis Tissue Repair, vol.5, issue.1, p.15, 2012.

Y. Mebratu and Y. Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer?, Cell Cycle, vol.8, issue.8, pp.1168-1175, 2009.

S. H. Ko, J. Jung, Y. Kim, J. S. Kim, and J. M. Kim, Bacteroides fragilis enterotoxin upregulates lipocalin-2 expression in intestinal epithelial cells, Lab Invest, vol.93, issue.4, p.384, 2013.

S. Mao, T. Jiang, G. Shang, Z. Wu, and N. Zhang, Increased expression of neutrophil gelatinase-associated lipocalin receptor by interleukin-1? in human mesangial cells via MAPK/ERK activation, Int J Mol Med, vol.27, issue.4, pp.555-60, 2011.

G. Ding, J. Fang, S. Tong, L. Qu, H. Jiang et al., Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer: LCN2/ERK/SLUG Axis Promotes PCa Aggression. The Prostate, vol.75, pp.957-68, 2015.

T. Lawrence, The Nuclear Factor NF-B Pathway in Inflammation, Cold Spring Harb Perspect Biol, vol.1, issue.6, pp.1651-001651, 2009.

K. Van-der-heiden, S. Cuhlmann, L. A. Luong, M. Zakkar, and P. C. Evans, Role of nuclear factor ?B in cardiovascular health and disease, Clin Sci, vol.118, issue.10, pp.593-605, 2010.

D. G. Harrison, T. J. Guzik, H. E. Lob, M. S. Madhur, P. J. Marvar et al., Inflammation, Immunity, and Hypertension. Hypertension, vol.57, pp.132-172, 2011.

F. Montecucco, L. Liberale, A. Bonaventura, A. Vecchiè, F. Dallegri et al., The Role of Inflammation in Cardiovascular Outcome, Curr Atheroscler Rep, vol.19, issue.3, p.11, 2017.

J. D. Imig and M. J. Ryan, Immune and inflammatory role in renal disease, Compr Physiol, vol.3, issue.2, pp.957-76, 2013.

S. Candido, R. Maestro, J. Polesel, A. Catania, F. Maira et al., Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer, Oncotarget, vol.5, issue.6, p.1576, 2014.

X. Xiao, B. S. Yeoh, and M. Vijay-kumar, Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation, Annu Rev Nutr, vol.37, pp.103-133, 2017.