A Cramer-Rao type inequality for estimating a hazard with censoring

Abstract : Two very active areas of statistical research are non-parametric function estimation and analysis of censored survival data. A minimax asymptotic rate of convergence for the estimation of a hazard is obtained, in the presence of random right censoring using the link between the Kullback–Leibler distance of two probabilities and a weighted Lp-type distance between their corresponding hazards.
Type de document :
Communication dans un congrès
2017 Conference Lifetime Data Science on Precision Medicine and Risk Analysis with Lifetime Data, May 2017, Storrs CT, United States. 2017, 〈http://merlot.stat.uconn.edu/lida/〉
Liste complète des métadonnées

https://hal-descartes.archives-ouvertes.fr/hal-01445206
Contributeur : Catherine Huber <>
Soumis le : mardi 24 janvier 2017 - 16:19:28
Dernière modification le : mardi 10 octobre 2017 - 11:22:05

Identifiants

  • HAL Id : hal-01445206, version 1

Collections

Citation

Catherine Huber-Carol. A Cramer-Rao type inequality for estimating a hazard with censoring. 2017 Conference Lifetime Data Science on Precision Medicine and Risk Analysis with Lifetime Data, May 2017, Storrs CT, United States. 2017, 〈http://merlot.stat.uconn.edu/lida/〉. 〈hal-01445206〉

Partager

Métriques

Consultations de la notice

63