Kernel estimation of extreme risk measures for all domains of attraction

by

Jonathan EL METHNI

in collaboration with

Stéphane GIRARD & Laurent GARDES

CIRM Workshop "Extremes - Copulas - Actuarial science"
Marseille February 2016
The Value-at-Risk

- Let $Y \in \mathbb{R}$ be a random loss variable. The Value-at-Risk of level $\alpha \in (0, 1)$ denoted by $\text{VaR}(\alpha)$ is defined by

$$\text{VaR}(\alpha) := \bar{F}^\leftarrow(\alpha) = \inf \{ y, \bar{F}(y) \leq \alpha \},$$

where \bar{F}^\leftarrow is the generalized inverse of the survival function $\bar{F}(y) = \mathbb{P}(Y \geq y)$ of Y.

The $\text{VaR}(\alpha)$ is the quantile of level α of the survival function of the r.v. Y.
Let us consider Y_1 and Y_2 two loss r.v. with associated survival function F_1 and F_2.

Random variables with light tail probabilities and with heavy tail probabilities may have the same VaR(α). This is one of the main criticism against VaR as a risk measure (Embrechts et al. [1997]).
The Conditional Tail Expectation of level $\alpha \in (0,1)$ denoted $\text{CTE}(\alpha)$ is defined by

$$\text{CTE}(\alpha) := \mathbb{E}(Y|Y > \text{VaR}(\alpha)).$$

\Rightarrow The $\text{CTE}(\alpha)$ takes into account the whole information contained in the upper part of the tail distribution.
The Conditional Tail Expectation of level $\alpha \in (0, 1)$ denoted $\text{CTE}(\alpha)$ is defined by

$$\text{CTE}(\alpha) := \mathbb{E}(Y | Y > \text{VaR}(\alpha)).$$

The $\text{CTE}(\alpha)$ takes into account the whole information contained in the upper part of the tail distribution.
The Conditional Tail Variance

The Conditional Tail Variance of level $\alpha \in (0, 1)$ denoted $CTV(\alpha)$ and introduced by Valdez [2005] is defined by

$$CTV(\alpha) := \mathbb{E}((Y - CTE(\alpha))^2 | Y > \text{VaR}(\alpha)).$$

The $CTV(\alpha)$ measures the conditional variability of Y given that $Y > \text{VaR}(\alpha)$ and indicates how far away the events deviate from $CTE(\alpha)$.
The Conditional Tail Moment

The Conditional Tail Skewness of level $\alpha \in (0, 1)$ denoted $\text{CTS}(\alpha)$ and introduced by Hong and Elshahat [2010] is defined by

$$\text{CTS}(\alpha) := \frac{\mathbb{E}(Y^3 | Y > \text{VaR}(\alpha))}{(\text{CTV}(\alpha))^{3/2}}$$

\implies We can unify the definitions of the previous risk measures using the Conditional Tail Moment introduced by El Methni et al. [2014].

Definition

The Conditional Tail Moment of level $\alpha \in (0, 1)$ is defined by

$$\text{CTM}_b(\alpha) := \mathbb{E}(Y^b | Y > \text{VaR}(\alpha)),$$

where $b \geq 0$ is such that the moment of order b of Y exists.
Rewritten risk measures

All the previous risk measures of level α can be rewritten as

<table>
<thead>
<tr>
<th>Risk Measure</th>
<th>Rewritten risk measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{CTE}(\alpha) = \mathbb{E}(Y</td>
<td>Y > \text{VaR}(\alpha))$</td>
</tr>
<tr>
<td>$\text{CTV}(\alpha) = \mathbb{E}((Y - \text{CTE}(\alpha))^2</td>
<td>Y > \text{VaR}(\alpha))$</td>
</tr>
<tr>
<td>$\text{CTS}(\alpha) = \mathbb{E}(Y^3</td>
<td>Y > \text{VaR}(\alpha))/(\text{CTV}(\alpha))^{3/2}$</td>
</tr>
</tbody>
</table>

\implies All the risk measures depend on the CTM_b.
Our contributions consist in adding two difficulties in the framework of the estimation of risk measures.

First we add the presence of a random covariate $X \in \mathbb{R}^p$.

- Y is a positive random variable and $X \in \mathbb{R}^p$ a random vector of regressors recorded simultaneously with Y.
- In what follows, it is assumed that (X, Y) is a continuous random vector.
- The probability density function (p.d.f.) of X is denoted by $g(\cdot)$.
- The conditional p.d.f. of Y given $X = x$ is denoted by $f(\cdot|x)$.
For any \(x \in \mathbb{R}^p \) such that \(g(x) \neq 0 \), the conditional distribution of \(Y \) given \(X = x \) is characterized by the conditional survival function

\[
\bar{F}(\cdot|x) = \mathbb{P}(Y > \cdot | X = x)
\]

or, equivalently, by the Regression Value at Risk defined for \(\alpha \in (0, 1) \) by

\[
\text{RVaR}(\alpha|x) := \bar{F}^{-1}(\alpha|x) = \inf\{t, \bar{F}(t|x) \leq \alpha\}.
\]

The Regression Value at Risk of level \(\alpha \) is a generalization to a regression setting of the Value at Risk.

The Regression Conditional Tail Moment of order \(b \) is defined by

\[
\text{RCTM}_b(\alpha|x) := \mathbb{E}(Y^b | Y > \text{RVaR}(\alpha|x), X = x),
\]

where \(b \geq 0 \) is such that the moment of order \(b \) of \(Y \) exists.
Second we are interested in the estimation of risk measures in the case of extreme losses.

To this end, we replace the fixed order $\alpha \in (0, 1)$ by a sequence $\alpha_n \to 0$ as the sample size $n \to \infty$.

\[
\begin{align*}
\text{RVaR}(\alpha_n|x) & := \bar{F}^{\leftarrow}(\alpha_n|x) \\
\text{RCTM}_b(\alpha_n|x) & := \mathbb{E}(Y^b|Y > \text{RVaR}(\alpha_n|x), X = x)
\end{align*}
\]

All the risk measures depend on the RCTM$_b$.

\[
\begin{align*}
\text{RCTE}(\alpha_n|x) & = \text{RCTM}_1(\alpha_n|x), \\
\text{RCTV}(\alpha_n|x) & = \text{RCTM}_2(\alpha_n|x) - \text{RCTM}_1^2(\alpha_n|x), \\
\text{RCTS}(\alpha_n|x) & = \text{RCTM}_3(\alpha_n|x)/(\text{RCTV}(\alpha_n|x))^{3/2}.
\end{align*}
\]
Starting from \(n \) independent copies \((X_1, Y_1), \ldots, (X_n, Y_n)\) of the random vector \((X, Y)\), we address here the estimation of the Regression Conditional Tail Moment of level \(\alpha_n \) and order \(b \geq 0 \) given by

\[
\text{RCTM}_b(\alpha_n|x) := \frac{1}{\alpha_n} \mathbb{E} \left(Y^b \mathbb{I}\{Y > \text{RVaR}(\alpha_n|x)\} \mid X = x \right),
\]

where \(b \) is such that the moment of order \(b \) of \(Y \) exits and \(\mathbb{I}\{\cdot\} \) is the indicator function.

We want to estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

\[
\left\{ \left(\hat{\text{RCTM}}_{b_j,n}(\alpha_n|x), \ j = 1, \ldots, J \right) \right\},
\]

with \(0 \leq b_1 < \ldots < b_J \) and where \(J \) is an integer.
Estimator of the RVaR

The estimator of the Regression Value at Risk of level α_n considered is given by

$$\hat{\text{RVaR}}_n(\alpha_n|x) = \inf\{t, \hat{F}_n(t|x) \leq \alpha_n\}$$

with

$$\hat{F}_n(y|x) = \frac{\sum_{i=1}^n K_{k_n}(x - X_i) \mathbb{I}\{Y_i > y\}}{\sum_{i=1}^n K_{k_n}(x - X_i)}.$$

- The bandwidth (k_n) is a non random sequence converging to 0 as $n \to \infty$.

- It controls the smoothness of the kernel estimator.

- For $z > 0$, we have also introduced the notation $K_z(\cdot) = z^{-p}K(\cdot/z)$ where $K(\cdot)$ is a density on \mathbb{R}^p.

- The estimation of the $\text{RVaR}(\alpha_n|x)$ has been addressed for instance by Daouia et al. [2013].
The estimator of the Regression Conditional Tail Moment of level α_n and order b is given by

$$\hat{\text{RCTM}}_{b,n}(\alpha_n|x) = \frac{1}{\alpha_n} \frac{\sum_{i=1}^{n} \mathcal{K}_{h_n}(x - X_i) Y_i^b \mathbb{I}\{Y_i > \hat{\text{RVaR}}_n(\alpha_n|x)\}}{\sum_{i=1}^{n} \mathcal{K}_{h_n}(x - X_i)}$$

where

$$\hat{\text{RVaR}}_n(\alpha_n|x) = \inf\{t, \hat{F}_n(t|x) \leq \alpha_n\}$$

with

$$\hat{F}_n(y|x) = \frac{\sum_{i=1}^{n} \mathcal{K}_{k_n}(x - X_i) \mathbb{I}\{Y_i > y\}}{\sum_{i=1}^{n} \mathcal{K}_{k_n}(x - X_i)}.$$

- The bandwidths (h_n) and (k_n) are non random sequences converging to 0 as $n \to \infty$.
- They control the smoothness of the kernel estimators. In what follows, the dependence on n for these two sequences is omitted.
- For the sake of simplicity we have chosen the same kernel $\mathcal{K}(\cdot)$.
Von-Mises condition in the presence of a covariate

To obtain the asymptotic property of the Regression Conditional Tail Moment estimator, an assumption on the right tail behavior of the conditional distribution of Y given $X = x$ is required. In the sequel, we assume that,

\[(F)\] The function $\text{RVaR}(\cdot|x)$ is differentiable and

$$\lim_{\alpha \to 0} \frac{\text{RVaR}'(t\alpha|x)}{\text{RVaR}'(\alpha|x)} = t^{-(\gamma(x)+1)},$$

locally uniformly in $t \in (0, \infty)$.

\implies In other words:

$$-\text{RVaR}'(\cdot|x)$$

is said to be regularly varying at 0 with index $-(\gamma(x)+1)$.

The condition (F) entails that the conditional distribution of Y given $X = x$ is in the maximum domain of attraction of the extreme value distribution with extreme value index $\gamma(x)$.

Conditional extreme-value index

The unknown function $\gamma(x)$ is referred as the **conditional extreme-value index**.

It controls the behaviour of the tail of the survival function and by consequence the behaviour of the extreme values.

\Rightarrow if $\gamma(x) < 0$, $F(.|x)$ belongs to the domain of attraction of **Weibull**. It contains distributions with finite right tail, i.e. **short-tailed**.

\Rightarrow if $\gamma(x) = 0$, $F(.|x)$ belongs to the domain of attraction of **Gumbel**. It contains distributions with survival function exponentially decreasing, i.e. **light-tailed**.

\Rightarrow if $\gamma(x) > 0$, $F(.|x)$ belongs to the domain of attraction of **Fréchet**. It contains distributions with survival function polynomially decreasing, i.e. **heavy-tailed**.

The case $\gamma(x) > 0$ has already been investigated by El Methni et al. [2014].
Assumptions

The asymptotic normality of $\widehat{RCTM}_{b,n}(\alpha_n|x)$ is obtained under additional assumptions.

First, a Lipschitz condition on the probability density function g of X is required. For all $(x, x') \in \mathbb{R}^p \times \mathbb{R}^p$, denoting by $d(x, x')$ the distance between x and x', we suppose that

(L) There exists a constant $c_g > 0$ such that $|g(x) - g(x')| \leq c_g d(x, x')$.

The next assumption is devoted to the kernel function $K(\cdot)$.

(K) $K(\cdot)$ is a bounded density on \mathbb{R}^p, with support S included in the unit ball of \mathbb{R}^p.

Before stating our main result, some further notations are required.

For $\xi > 0$, the largest oscillation at point $(x, y) \in \mathbb{R}^p \times \mathbb{R}_+^*$ associated with the Regression Conditional Tail Moment of order $b \in [0, 1/\gamma_+(x))$ is given by

$$\omega(x, y, b, \xi, h) = \sup \left\{ \left| \frac{\varphi_b(z|x)}{\varphi_b(z|x')} - 1 \right| \text{ with } \left| \frac{z}{y} - 1 \right| \leq \xi \text{ and } x' \in B(x, h) \right\},$$

where $\varphi_b(\cdot|x) := \overline{F}(\cdot|x)RCTM_b(\overline{F}(\cdot|x)|x)$ and $B(x, h)$ denotes the ball centred at x with radius h.
Asymptotic normality of $\hat{RVaR}_n(\alpha_n|x)$

Theorem 1

Suppose (F), (L) and (K) hold. For $x \in \mathbb{R}^p$ such that $g(x) > 0$, let $\alpha_n \to 0$ such that

$$nk^p \alpha_n \to \infty \quad \text{as} \quad n \to \infty$$

If there exists $\xi > 0$ such that

$$nk^p \alpha_n (k \lor \omega(x, RVaR(\alpha_n|x), 0, \xi, k))^2 \to 0,$$

then

$$\left(nk^p \alpha_n^{-1}\right)^{1/2} f(RVaR(\alpha_n|x)|x) \left(\hat{RVaR}_n(\alpha_n|x) - RVaR(\alpha_n|x)\right) \xrightarrow{d} \mathcal{N} \left(0, \frac{\|K\|^2}{g(x)}\right).$$

\implies We thus find back the result established in Daouia et al. [2013] under weaker assumptions.
Asymptotic joint distribution of our estimators

Theorem 2

Suppose \((F), (L)\) and \((K)\) hold. For \(x \in \mathbb{R}^p\) such that \(g(x) > 0\):

- Let \(0 \leq b_1 \leq \ldots \leq b_J < 1/(2\gamma_+(x))\),
- \(\bar{\ell} = h \wedge k\) and \(\ell = h \vee k\).
- Let \(\alpha_n \to 0\) such that \(n\bar{\ell}^p \alpha_n \to \infty\) as \(n \to \infty\).
- If there exists \(\xi > 0\) such that
 \[
 n\bar{\ell}^p \alpha_n \left(\bar{\ell} \vee \max_b \omega(x, \text{RVaR}(\alpha_n|x), b, \xi, \bar{\ell})\right)^2 \to 0,
 \]

then, if

\[
\frac{h}{k} \to 0 \quad \text{or} \quad \frac{k}{h} \to 0
\]

the random vector

\[
(n\bar{\ell}^p \alpha_n)^{1/2} \left\{ \left(\frac{\widehat{\text{RCTM}}_{b_j, n}(\alpha_n|x)}{\text{RCTM}_{b_j}(\alpha_n|x)} - 1 \right) \right\}_{j \in \{1, \ldots, J\}}
\]

is asymptotically Gaussian, centred, with a \(J \times J\) covariance matrix.
Covariance matrix two cases

In what follows, \((\cdot)_+\) (resp. \((\cdot)_-\)) denotes the positive (resp. negative) part function.

\(1\) If \(k/h \to 0\) then the covariance matrix is given by

\[
\|K\|^2_2 \Sigma^{(1)}(x) \over g(x)
\]

where for \((i, j) \in \{1, \ldots, J\}^2\),

\[
\Sigma^{(1)}_{i,j}(x) = (1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x)).
\]

\(2\) If \(h/k \to 0\) then the covariance matrix is given by

\[
\|K\|^2_2 \Sigma^{(2)}(x) \over g(x)
\]

where for \((i, j) \in \{1, \ldots, J\}^2\),

\[
\Sigma^{(2)}_{i,j}(x) = \frac{(1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x))}{1 - (b_i + b_j)\gamma_+(x)} = \frac{\Sigma^{(1)}_{i,j}(x)}{1 - (b_i + b_j)\gamma_+(x)}
\]
Recall that
\[\Sigma_{i,j}^{(1)}(x) = (1 - b_i \gamma_+(x))(1 - b_j \gamma_+(x)) \quad \text{and} \quad \Sigma_{i,j}^{(2)}(x) = \frac{\Sigma_{i,j}^{(1)}(x)}{1 - (b_i + b_j) \gamma_+(x)} \]

- Note that if \(\gamma(x) \leq 0 \), asymptotic covariance matrices do not depend on \(\{b_1, \ldots, b_J\} \) and thus the estimators share the same rate of convergence.

- Conversely, when \(\gamma(x) > 0 \), asymptotic variances are increasing functions of the RCTM order.

- Moreover, in this case, note that for all \(i \in \{1, \ldots, J\} \)
\[\Sigma_{i,i}^{(2)}(x) > \Sigma_{i,i}^{(1)}(x) \]

\[\implies \] Taking \(k/h \to 0 \) leads to more efficient estimators than \(h/k \to 0 \).
Asymptotic normality of $\hat{\text{RCTE}}_n(\alpha_n|\mathbf{x})$

Corollary

Suppose that the assumptions of Theorem 1 hold with $\gamma(x) < 1/2$. If there exists $\xi > 0$ such that

$$n\ell^p \alpha_n \left(\ell \lor \max \omega(x, \text{RVaR}(\alpha_n|\mathbf{x}), 1, \xi, \ell) \right)^2 \to 0,$$

then, if $h/k \to 0$ or $k/h \to 0$, the random variable

$$\left(n\ell^p \alpha_n \right)^{1/2} \left(\frac{\text{RCTE}_n(\alpha_n|\mathbf{x})}{\text{RCTE}(\alpha_n|\mathbf{x})} - 1 \right),$$

is asymptotically Gaussian, centred with variance

$$\frac{\vartheta_{\text{RCTE}} \|\mathbf{K}\|^2_2}{g(x)}$$

where

- If $k/h \to 0$ then
 $$\vartheta_{\text{RCTE}} = (1 - \gamma_+(x))^2$$

- If $h/k \to 0$ then
 $$\vartheta_{\text{RCTE}} = \frac{(1 - \gamma_+(x))^2}{(1 - 2 \gamma_+(x))}$$
Under (F), the Regression Conditional Tail Moment of order b is asymptotically proportional to the Regression Value at Risk to the power b.

Proposition

Under (F), for all $b \in [0, 1/\gamma_+(x))$,

$$
\lim_{\alpha \to 0} \frac{\text{RCTM}_b(\alpha|x)}{[\text{RVaR}(\alpha|x)]^b} = \frac{1}{1 - b\gamma_+(x)},
$$

and $\text{RCTM}_b(\cdot|x)$ is regularly varying with index $-b\gamma_+(x)$.

In particular, the Proposition is an extension to a regression setting of the result established in Hua and Joe [2011] for the Conditional Tail Expectation ($b = 1$) in the framework of heavy-tailed distributions ($\gamma = \gamma(x) > 0$).
Let us note $y_F(x) = \tilde{F}^{-1}(0|x) \in (0, \infty]$ the endpoint of Y given $X = x$

Two cases:

1. If the endpoint $y_F(x)$ is infinite:

$$y_F(x) = \infty \quad \text{then} \quad \gamma(x) \geq 0$$

\implies We can make risk measure estimation.

\implies We propose an application in pluviometry in the case $\gamma(x) > 0$.
Application in pluviometry

\[Y : \text{daily rainfall measured in mm. } X = \{\text{longitude, latitude, altitude}\}. \ 1958 \rightarrow 2000. \]

The Cévennes-Vivarais region
Application in pluviometry

\[Y : \text{daily rainfall measured in mm. } X = \{\text{longitude, latitude, altitude}\}. \quad 1958 \rightarrow 2000. \]

The Cévennes-Vivarais region

Aim \(\rightarrow\) to obtain maps of estimated extreme risk measures in all points of the region.
Application in pluviometry

\[Y : \text{daily rainfall measured in mm. } X = \{\text{longitude, latitude, altitude}\}. \ 1958 \implies 2000. \]

The Cévennes-Vivarais region

The 523 stations of interest

Aim \implies \text{to obtain maps of estimated extreme risk measures in all points of the region.}
Application in pluviometry

Y: daily rainfall measured in mm. $X = \{\text{longitude, latitude, altitude}\}$. 1958 \rightarrow 2000.

The Cévennes-Vivarais region

Aim \rightarrow to obtain maps of estimated extreme risk measures in all points of the region.
Application in pluviometry

\(Y \): daily rainfall measured in mm. \(X = \{\text{longitude, latitude, altitude}\} \). 1958 \(\rightarrow \) 2000.

The Cévennes-Vivarais region

Work in \(B(x, h_n) \)

Aim \(\rightarrow \) to obtain maps of estimated extreme risk measures in all points of the region.
Daouia et al. [2011] have established the asymptotic normality of an extrapolated version of the RVaR(\(\beta_n|x\)) with \(\beta_n\) arbitrary small.

El Methni et al. [2014] have established the asymptotic normality of an extrapolated version of the RCTM\(_b\)(\(\beta_n|x\)) with \(\beta_n\) arbitrary small.

As a consequence, replacing \(\widehat{\text{RVaR}}_n\) and \(\widehat{\text{RCTM}}_{b,n}\) by theirs extrapolated versions provides estimators for all risk measures considered in this presentation adapted to arbitrary small levels.

\[
\Rightarrow \text{In particular we want to obtain maps of risk measures of daily rainfall corresponding to an amount of rain which is exceeded on average once in 100 years.}
\]

\[
\Rightarrow \text{It corresponds to a level of risk } \beta = 1/(100 \times 365.25)
\]
Application in pluviometry

\[Y : \text{daily rainfall measured in mm.} \quad X = \{\text{longitude, latitude, altitude}\}. \quad 1958 \rightarrow 2000. \]

The Cévennes-Vivarais region

The 523 stations of interest

Aim \(\Rightarrow\) to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

\[Y : \text{daily rainfall measured in mm. } X = \{\text{longitude, latitude, altitude}\}. \ 1958 \rightarrow 2000. \]

The Cévennes-Vivarais region

Grid 200 × 200 points

Aim \(\Rightarrow\) to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

\(Y \): daily rainfall measured in mm. \(X = \{ \text{longitude, latitude, altitude} \} \). 1958 \(\rightarrow \) 2000.

The Cévennes-Vivarais region

Work in \(B(x, h_n) \)

Aim \(\rightarrow \) to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

\[Y : \text{daily rainfall measured in mm. } X = \{\text{longitude, latitude, altitude}\}. \quad 1958 \rightarrow 2000. \]

The Cévennes-Vivarais region

Bi-quadratic kernel

Aim \(\Rightarrow\) to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

Y : daily rainfall measured in mm. $X = \{\text{longitude, latitude, altitude}\}$. 1958 \rightarrow 2000.

The Cévennes-Vivarais region

Example : $\overline{\text{RVaR}}_n$ with $\gamma(x) > 0$

Aim \rightarrow to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

Y: daily rainfall measured in mm. $X = \{\text{longitude, latitude, altitude}\}$. $1958 \rightarrow 2000$.

The Cévennes-Vivarais region

Example: $\widehat{\text{RCTE}}_n$ with $\gamma(x) > 0$

Aim \Rightarrow to obtain maps of estimated extreme risk measures in all point of the region.
Application in pluviometry

\(Y \) : daily rainfall measured in mm. \(X = \{ \text{longitude, latitude, altitude} \} \). 1958 \(\Rightarrow \) 2000.

\(\widehat{\text{RVaR}}_n \) with \(\gamma(x) > 0 \)

\(\text{RCTE}_n \) with \(\gamma(x) > 0 \)

Aim \(\Rightarrow \) to obtain maps of estimated extreme risk measures in all point of the region.
If the endpoint \(y_F(x) \) is finite, the risk measures do not have sense:

\[
y_F(x) < \infty \quad \text{then} \quad \gamma(x) \leq 0 \implies \gamma_+(x) = 0
\]

As a consequence of the Proposition

\[
\lim_{\alpha \to 0} RCTM_b(\alpha|x) = y_F^b(x)
\]

We can use our Proposition to make frontier estimation.

We propose an application in nuclear reactor reliability.
The dataset comes from the US Electric Power Research Institute and consists of \(n = 254 \) toughness results obtained from non-irradiated representative steels.

An accurate knowledge of the change in fracture toughness of the reactor pressure vessel materials as a function of the temperature is of prime importance in a nuclear power plant’s lifetime programme.
Frontier estimation

- As the temperature decreases, the steel fissures more easily.

- Here, it is important to know the upper limit of fracture toughness of each material as a function of temperature.

- This translates into estimating the optimal support upper boundary.
Conclusions

Commentaries

+ **New tool** for the prevention of risk and frontier estimation.
+ Theoretical properties similar to the univariate case (extreme or not) and with or without a covariate.
+ Our theoretical results are similar to those obtained by Daouia *et al.* [2013] and El Methni *et al.* [2014].
+ Capable to estimate all risk measures based on conditional moments of the r.v. of losses given that the losses are greater than RVaR(\(\alpha\)) for short, light and heavy-tailed distributions.

Short-term perspectives

- Application to the nuclear data set.
- Tuning parameter selection procedure to choose \((\alpha_n, h)\).

Long-term perspectives

- Curse of dimensionality.
Principals references

Thank you for your attention